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Topological edge states in Rashba-Dresselhaus spin-orbit-coupled atoms in a Zeeman lattice
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We address the impact of spin-orbit coupling on the existence and properties of topological edge states of
cold neutral atoms and Bose-Einstein condensates loaded in honeycomb Zeeman lattices—lattices where the
spinor components are placed in potentials having opposite signs. We find that the type of spin-orbit-coupling
mechanism has profound effect on the emergence of topological edge states. We also reveal that edge states
persist when interatomic interactions are present and that they become metastable in Bose-Einstein condensates.
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Discrete and continuous lattices exhibit degeneracies in the
eigenmode spectrum when the corresponding Hamiltonian is
characterized by suitable spatial symmetries and time-reversal
invariance [1]. Graphene, as the paradigm of a honeycomb
lattice [2], is one of the best-known examples of structures
where energy bands touch at Dirac points. If the underlying
symmetries are broken, a gap may open at the Dirac points
thus leading to a transition to either a conventional or a
topological insulator phase, depending on which symmetry
is broken [1]. When such a lattice is located in contact with
a material having distinct topological properties, topological
states with energies falling into the gap and localized at the
edge between two materials may appear. An outstanding per-
turbation leading to the appearance of topological edge states
is spin-orbit coupling (SOC), which in electronic systems
gives rise to the quantum spin Hall effect [3,4].

Interest in topological edge states is constantly growing
[4,5] and to date the concept of topological insulation has
been extended to several areas of physics, where SOC can
be emulated by coupling the translational and the internal
spinor degrees of freedom, the latter often referred to as pseu-
dospin. Topological insulators have been realized in acoustic
[6] and mechanical systems [7], as well as in optical and
optoelectronic systems [8], including gyromagnetic photonic
crystals [9–11], semiconductor quantum wells [12], arrays of
coupled resonators [13,14], metamaterial superlattices [15],
helical waveguide arrays [16–18], systems with driving fields
containing vortex lattices [19], and in polaritonic systems,
where SOC originating in splitting of energy levels for dif-
ferent polarization states leads to topological effects [20–22].
In atomic systems with SOC induced by an homogeneous
field, the spin Hall effect was observed experimentally [23].
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Simulation of quantum spin Hall effect with atoms in optical
lattices subject to the field gradient was proposed in [24].

A synthetic SOC can be simulated in atomic systems
[25–27], where proper superpositions of hyperfine atomic
states, which are described by two- (or multi-) component
wave functions, have spinor character, and therefore mimic
spin. Such states are considered to bear a pseudospin. In
atomic systems with the SOC induced by a homogeneous
field, the spin Hall effect was observed experimentally [23].

In this Rapid Communication we show that topological
edge states can be realized in systems of cold pseudo-spin-
1/2 SOC atoms and SOC Bose-Einstein condensates (SO-
BEC) [25,26] embedded in a Zeeman lattice. We consider
periodically varying Zeeman splitting induced by external
fields forming a lattice. Such lattices having opposite signs
for two spinor components may obey a desirable symmetry
[28] and are feasible experimentally [29]. The peculiarity of
the Zeeman lattice is that when the spinor components in
a Zeeman lattice are uncoupled, one of them is localized
in deep potential wells and is well described by the tight-
binding approximation, while the second component is in the
“almost-free-electron” limit. SOC links spinor components,
i.e., it couples these states with practically opposite dynamical
properties. Tunability of SOC in atomic systems [26], where
nearly arbitrary gauge potentials can be created [27], affords
the exploration of the interplay of the Rashba and Dresselhaus
mechanisms in the formation of topological edge states. When
considering SO-BEC, the nonlinearity stemming from two-
body interactions becomes relevant [30]. Since the scattering
length can be of any sign, one can explore topological states
in different nonlinear regimes. We present an example of the
nonlinear topological edge states in atomic condensates and
study their stability.

We address a SOC atom described by the spinor
ψ = (ψ1, ψ2)T (T stands for the transpose), whose
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FIG. 1. Upper panel: the Zeeman lattice with zigzag (left) and bearded (right) edges used in simulations (three unit cells are shown). Lower
panels: examples of edge states for different Bloch momenta. Only |ψ1| is shown. In all cases βx = βy = 1.5.

evolution is governed by the Schrödinger equation i∂ψ/∂t =
(Ĥ0 + ĤSOC)ψ . Here Ĥ0 = (k̂2

x + k̂2
y )/2 + Û (r), k̂x = −i∂x ,

k̂y = −i∂y , and the units in which m = h̄ = 1 are used.
The SOC is described by ĤSOC = βyσxk̂y − βxσyk̂x , where
the positive constants βx,y are determined by the interplay
between Rashba SOC and Dresselhaus SOC, and σx,y,z are
the Pauli matrices. The case βx = βy = βR corresponds to
the pure Rashba SOC βR(σxk̂y − σyk̂x ) [31]. Similar gauge
potentials were previously used in atomic systems [32], where
they are created by the external coupling of hyperfine states.
This crucial flexibility is a difference between atomic systems
and their solid-state counterparts, where the particular
form of SOC depends on the lattice symmetry [33]. An
independently engineered Zeeman lattice [29] is created to
have identical functional shapes, but opposite signs for two
different spinor components. We model the Zeeman lattice
by the potential Û (r) = −R(x, y)σz, where R(x, y) =
ρ

∑
m,n e−[(x−xm )2+(y−yn )2]/d2

describes a honeycomb structure
with the amplitude ρ, characteristic width d of lattice sites
at the nodes (xm, yn) of the discrete honeycomb grid. The
distance between neighboring sites is a. In these notations
−R(x, y) and +R(x, y) are the potentials for the components
ψ1 and ψ2, respectively. Thus, domains where ψ1 tends to
have maxima are the regions with strongest expulsion for
ψ2. This leads to nontrivial competition between the Zeeman
lattice and SOC, since the latter tends to create nonzero
density in the ψ2 component in the vicinity of density maxima
of the ψ1 component, i.e., around maxima of potential for ψ2.

We assume that the lattice is infinite along the y axis and
is truncated along the x axis. The truncation is such that
the lattice has two different edges, where topological states
can appear: zigzag and bearded ones (Fig. 1, top row). Such
truncation allows us to compare directly the properties of the
modes excited at the edges of different types. The modes of
such truncated lattice are Bloch waves of the form ψ (x, y) =
eiky−iε(k)tφ(x, y), where ε(k) is the energy, k ∈ [0,K] is the
Bloch momentum along the y axis, φ is the periodic spinor
function with a period T = 31/2a along the y axis, and K =
2π/T is the width of the Brillouin zone.

In the absence of SOC, i.e., when βx = βy = 0, the spinor
component ψj (j = 1, 2) solves the stationary Schrödinger
equation with the potential (−1)jR(x, y). Since the potential

−R(x, y) < 0 represents an array of narrow wells, the ground
state of the ψ1 component has negative energy. The potential
+R(x, y) is positive and the corresponding energy spectrum
for ψ2 is located at ε > 0. This peculiarity has several con-
sequences. First, in the presence of weak SOC the opening
of the lowest topological gap is expected at those (negative)
energy levels, where degeneracies in the form of Dirac points
are encountered in the spectrum of ψ1 when it is decoupled
from ψ2. Second, in this lowest topological gap all states are
characterized by the dominating ψ1 component. Finally, for
a deep lattice, like the one used here within the framework
of the full continuous model, the decoupled component ψ1 is
well described by the tight-binding approximation [34].

One of our central findings is that the type of SOC, or more
precisely the relation between SOC strengths βx and βy is a
decisive factor determining whether topological modes can
be created. Indeed, let us first consider the case when one
of the SOC components is nonzero, but small enough to be
considered as a perturbation of the Hamiltonian Ĥ0 of the in-
finite lattice. Let T be the time-reversal operator that changes
k̂ → −k̂ and performs complex conjugation of the wave
function: T ψ (r) = ψ∗(r). The gap in the spectrum of the
infinite lattice can open only in the vicinity of the Dirac points
under the action of perturbations. However, for a pair of Dirac
points with coordinates [0,±2K/3] in the reciprocal lattice,
the SOC component βxσykx , which does not break time-
reversal symmetry T , becomes exactly zero, since in these
points kx = 0. Thus, a total gap cannot be opened by such a
perturbation. On the other hand, perturbation introduced by
another SOC component βyσxky that acquires nonzero value
βyσx (2K/3) in the above-mentioned Dirac points, does open
the gap. We have verified these properties numerically not
only for small values of SOC strengths, but also for βx ∼ 1
and βy ∼ 1 (keeping βy = 0 or βx = 0, respectively). Even
though βyσxk̂y perturbation opens the gap around Dirac points
of Ĥ0 and even though it is neither T - nor P-symmetric
(where P is the operator of spatial inversion), it cannot lead
to the appearance of topological states, when it acts alone.
The reason behind this is that unperturbed Hamiltonian Ĥ0

obeys additional time-reversal symmetry T ′ = σzT that is
equivalent to the introduction of an unessential phase into the
ψ2 component ψ2 → eiπψ2 that is decoupled from the ψ1
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FIG. 2. Energy of linear states versus Bloch momentum k in a truncated Zeeman lattice with zigzag-bearded edges for different SOC
strengths βx and βy . Black curves correspond to bulk modes, while red (green) curves correspond to edge states residing on the left zigzag
(right bearded) edge. The lattice parameters are ρ = 8, a = 1.4, and d = 0.5. The Chern numbers C1,2 of the two lowest bands of the respective
bulk lattice are shown in the panels. Here and in all other figures all quantities are plotted in dimensionless units.

component in the absence of SOC. Since [T ′, βyσxk̂y] = 0,
the component βyσxk̂y does not break time-reversal symmetry
T ′ and cannot lead to topological effects.

The symmetry considerations for infinite lattice have direct
implications for the formation of edge states in the truncated
lattice as illustrated in Fig. 2. Without SOC, βx = βy = 0,
one observes two bands touching in Dirac points at k = K/3
and k = 2K/3 that are remnants of the Dirac points of the
bulk lattice. Two nontopological edge states arise at zigzag
(red curve) and bearded (green curve) edges. When βx = 0
the SOC component ∼βy opens a gap that is nontopological
in accordance with the above considerations. In this gap one
encounters only one nontopological edge state (it does not
connect two bands; see second panel of Fig. 2). The inclusion
of a weak SOC component ∼βx cannot immediately lead to
the appearance of topological edge states: since a nontopolog-
ical gap already exists, it should first close under the action of
the βx component (this occurs around βx = 0.85, third panel
of Fig. 2) and then reopen in the form of a topological gap at
βx > 0.85 (fourth panel, Fig. 2), where two topological modes
connecting different bands appear. The topological phase
transition is confirmed by Chern numbers of the respective
bands [35]: Cn = 1/(2π )

∫
BZ [∂xAny (k) − ∂yAnx (k)]d2k,

where Anα = i〈ψnk|∂kα
|ψnk〉 is the Berry connection, ψnk

is the Bloch function of the nth band, α = x, y, and the
integral is over the first Brillouin zone [36]. Before the gap
closing in Fig. 2, the lowest bands have equal Chern numbers
C1,2 = 0. After gap reopening the bands acquire Chern
numbers C1 = −1 and C2 = 1. According to bulk-edge
correspondence this corresponds to a single topological edge
state in the truncated lattice.

A different scenario is observed when βx is large and one
gradually increases βy contribution. At βy = 0 no gap exists
in the spectrum even if βx ∼ 1, as was explained above. By
adding even a weak βyσxk̂y term into the Hamiltonian, one
breaks the time-reversal symmetry T and, hence, a topologi-
cal gap appears (the Hamiltonian with βx > 0 does not obey
T ′ symmetry). The width of this gap monotonically increases
with βy , and unidirectional edge states exist at different edges,
as shown in the fifth and sixth panels of Fig. 2.

These results imply that both βx and βy SOC components
are required for the existence of topological states. The largest
topological gap was achieved for pure Rashba coupling, when
βx = βy (sixth panel of Fig. 2). Results presented in this figure
constitute the central finding of this Rapid Communication:
the emergence of topological edge states due to the interplay

of SOC and the Zeeman lattice, induced by the inhomoge-
neous magnetic field.

Further we concentrate on the case of Rashba coupling
βx = βy . The sixth panel of Fig. 2 indicates that edge states
corresponding to zigzag and bearded edges may coexist for
small intervals of Bloch momentum, but in general, they
occupy different domains in k [38]. Representative examples
of topological edge states are shown in Fig. 1. The best local-
ization of the edge estate is achieved when energy ε falls into
the center of the topological gap. When energy approaches
the lower or upper allowed bands, the mode strongly expands
toward the center of the lattice.

Dispersive properties of the edge states are summarized in
Fig. 3 where k dependencies of derivatives ε′ ≡ ∂ε/∂k and
ε′′ ≡ ∂ε/∂k are shown. A peculiarity of our system is that
edge states are not necessarily moving: the group velocity
ε′ ≡ ∂ε/∂k can be zero for the zigzag edge modes and can
even have two zeros for the bearded edge modes [Fig. 3(a)].
For quantum spin Hall states such zero group velocity modes
on conventional graphene lattices were observed in [39].
Thus, by changing the Bloch momentum one can control
the direction of the surface current. An unusual situation
is possible in the vicinity of k = K/2, where the states at
the opposite edges move in the same direction (the red and
green curves closely approach). Also, Fig. 3(b) suggests that
second-order dispersion may vanish for some edge states.
When a broad envelope is superimposed on such a state, the
latter moves along the interface over hundreds of lattice sites,
representing a linear quasi-non-dispersing wave packet.

FIG. 3. Group velocity ε′ (a) and dispersion ε′′ (b) vs Bloch
momentum k for edge states from zigzag (red) and bearded (green)
edges at βx = βy = 1.5. Dashed lines indicate ε′ = 0 or ε′′ = 0 level.
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FIG. 4. Honeycomb lattice with zigzag edges and |ψ1| distribu-
tions at different moments of time illustrating circulation of the edge
state with broad envelope at k = 0.40K , βx = βy = 1.5.

The example of a topologically protected spinor surface
current is shown in Fig. 4. We consider a triangular lat-
tice with zigzag edges, with each edge containing 30 peri-
ods of the honeycomb structure. The initial state ψ (x, y) =
φ(x, y)eikye−y2/w2

at t = 0 was prepared using edge state φ

corresponding to Bloch momentum k = 0.4K with envelope
of width w = 20. Such a state can traverse several corners of
triangular lattice returning to its original location. Although
the triangular shape of the lattice is less favorable for persis-
tent circular currents because of relatively strong scattering
of edge states into the bulk modes at the corners, an almost
complete round trip of the wave packet still occurs.

In a SO-BEC, where atoms in a Zeeman lattice experience
two-body interactions, the two-component order parameter ψ

is governed by the coupled Gross-Pitaevski equations:

i
∂ψ

∂t
= 1

2

(
1

i
∇ + A

)2

ψ + Û (r)ψ + g(ψ†ψ )ψ . (1)

Here A = −iβxσy + jβyσx is the non-Abelian gauge poten-
tial and g characterizes inter- and intraspecies interactions,
which are considered equal [25]. The sign of g coincides
with the sign of scattering length for two-body interactions
and is considered relatively small, such that the BEC is in
the superfluid phase for the chosen Zeeman lattice. Here
we are interested in the impact of the nonlinearity on the

FIG. 5. Amplitudes of the components (a) and number of atoms
per y period (b) of nonlinear edge states at the zigzag edge versus
chemical potential μ for βx = βy = 1.5. Black (red) curves corre-
spond to g = −1 (g = +1). Vertical dashed lines indicate borders of
the topological gap. Red dots correspond to linear edge states.

FIG. 6. Evolution of the perturbed nonlinear edge state from
zigzag edge at μ = −3.43, k = 0.40K , βx = βy = 1.5, and g = −1.

properties of topological edge states, considered above for the
linear case. Topological states now are searched as nonlinear
Bloch modes parametrized by the chemical potential μ and
Bloch momentum k: ψ (x, y) = eiky−iμtφ(x, y). Bifurcations
of such modes from the linear edge states with μ = ε at the
zigzag boundary are depicted in Fig. 5, where we plot the peak
amplitudes a1,2 of the spinor components and the number of
atoms N = ∫ ∞

−∞ dx
∫ T

0 dy ψ†ψ per y period, as functions of
the chemical potential.

We considered positive, g > 0, and negative, g < 0, scat-
tering lengths and found that amplitudes and norms of the
nonlinear edge states monotonically increase toward the gap
edges. They vanish in the point where they bifurcate from the
linear edge state (red dots in Fig. 5). In all cases the first spinor
component dominates. Both attractive and repulsive interac-
tions lead to delocalization of the nonlinear edge states and
their strong expansion into bulk of the lattice when the chem-
ical potential approaches one of the topological gap edges.

Rigorously, nonlinear edge states in Zeeman lattices were
found to be unstable. However, these instabilities may develop
at very large evolution times, therefore in practice the states
may be seen as metastable. For a topological edge state,
instability is determined by the number of atoms N and
by the point of bifurcation of a nonlinear mode from the
linear limit (the red dot in Fig. 5). The typical timescale of
instability is larger for nonlinear modes bifurcating from the
center of the gap and it decreases with N , when the chemical
potential approaches a gap edge ([36]). For g < 0 and g > 0
instabilities are qualitatively different, as illustrated in Figs. 6
and 7, respectively. For the selected value of k = 0.4K the
effective mass ∼1/ε′′ along the y axis is negative. For g < 0
this implies that no modulational instability can develop in

FIG. 7. Evolution of the perturbed nonlinear edge state from
zigzag edge at μ = −3.34, k = 0.40K , βx = βy = 1.5, and g = +1.
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the y direction along the interface. Indeed, no splitting into
regular fragments along the edge is observed in Fig. 6 and
instability shows up as a dispersion of the edge state into the
bulk. In the case of g > 0 the development of modulational
instability is possible for negative effective mass and one can
clearly see fragmentation of the wave into a periodic pattern in
Fig. 7. This can be considered as a precursor to the formation
of edge solitons.

Returning to the example of topologically protected spinor
surface current illustrated in Fig. 4 for a triangular structure,
we verified that one round trip, similar to the one shown
in Fig. 4, still occurs for moderate attractive and repulsive
nonlinearities that only lead to an increase of the bulk
radiation [36].

Summarizing, we have revealed the existence of topolog-
ical edge states in atomic systems with SOC loaded in a
honeycomb Zeeman lattice. We explored a wide range of

parameters characterizing orthogonal components of the SOC
and found that they play fundamentally different roles in the
gap opening and edge state formation. The obtained states
demonstrate persistent spinor surface currents in finite-size
lattices. When two-body interactions are included and the
atomic system becomes a spin-orbit-coupled BEC, nonlinear
metastable topological edge states can exist.
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